NumPyに関する記事

NumPyレシピ | 全ての組み合わせについての計算はnp.ufunc.outerで!
NumPy配列の要素同士の全ての組み合わせについて計算を行う方法を紹介します。例えば、2つの配列の要素同士の全ての組み合わせについて差分などです。np.ufunc.outer()を使う方法、np.meshgrid()やnp.tile()で2次元化する方法を比較します。

NumPyレシピ | aのx乗(a^x, a**x)はどの方法が高速か?
aのx乗を高速に計算する方法を紹介します。Pythonでは、a**xやnp.power(a, x)など実装方法がいくつかあるので、計算速度を比較します。計算速度が速いnp.expを使ってa**xを計算する方法も取り入れます!

NumPyレシピ | np.exp(x)はe**xよりも2倍ほど高速!
Pythonでexp(x)を高速に計算する方法を紹介します。Exponential(exp(x)やeのx乗)の計算は統計学やデータ解析で頻出の計算です。Pythonでは、numpy.expやe**xなど実装方法がいくつかあるので、計算速度を比較します。

NumPyレシピ | 複数のベクトルのノルム(大きさ)はnp.linalg.normで高速計算できる!
今回はPythonデータ解析、複数のベクトルのノルムを高速に計算する方法です。ノルムの計算については複数のベクトルでもnp.linalg.norm()というメソッドを用いて計算することができます。速度的にもnp.linalg.norm()で十分です。

NumPyレシピ | 複数のベクトル同士の内積は成分計算するのが速い!
今回はPythonデータ解析、複数のベクトル同士の内積を高速に計算する方法です。一つのベクトル同士の内積はNumPyのnp.dot()でできますが、np.dot()では複数のベクトル同士の内積を一度に計算することはできないため、高速に計算するには工夫が必要です。

統計学&pythonレシピ | 任意の確率分布からのサンプリング4(NumPy棄却サンプリング編)
本シリーズでは、任意の確率分布からランダムサンプルを得る方法をご紹介します!シリーズ第4回の今回は、棄却サンプリングをNumPyで高速実装する方法をご紹介します!第2回で紹介した方法の1/100程度の計算時間に短縮できる実践で役に立つ実装方法です!お試しください!